Undergraduate Compulsory 1002: Διαφορά μεταξύ των αναθεωρήσεων

Από Περιγράμματα - Τμήμα Μαθηματικών
Μετάβαση σε: πλοήγηση, αναζήτηση
Χωρίς σύνοψη επεξεργασίας
 
(Μία ενδιάμεση αναθεώρηση από τον ίδιο χρήστη δεν εμφανίζεται)
Γραμμή 9: Γραμμή 9:


<div id="pills-gr" class="tab-pane fade show active" role="tabpanel" aria-labelledby="pills-gr-tab" style="text-align:left;">
<div id="pills-gr" class="tab-pane fade show active" role="tabpanel" aria-labelledby="pills-gr-tab" style="text-align:left;">
=== Γενικά ===
=== Γενικά ===


Γραμμή 49: Γραμμή 50:
| Δείτε το [https://ecourse.uoi.gr/ eCourse], την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.
| Δείτε το [https://ecourse.uoi.gr/ eCourse], την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.
|}
|}


=== Μαθησιακά Αποτελέσματα ===
=== Μαθησιακά Αποτελέσματα ===
Γραμμή 66: Γραμμή 68:
* Ομαδική Εργασία
* Ομαδική Εργασία
|}
|}


=== Περιεχόμενο Μαθήματος ===
=== Περιεχόμενο Μαθήματος ===
Γραμμή 103: Γραμμή 106:
| Γραπτή τελική εξέταση
| Γραπτή τελική εξέταση
|}
|}


=== Συνιστώμενη Βιβλιογραφία ===
=== Συνιστώμενη Βιβλιογραφία ===


Δείτε την υπηρεσία [https://service.eudoxus.gr/public/departments#20 Εύδοξος]. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
Δείτε την υπηρεσία [https://service.eudoxus.gr/public/departments#20 Εύδοξος]. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
Γραμμή 111: Γραμμή 114:


<div id="pills-en" class="tab-pane fade" role="tabpanel" aria-labelledby="pills-en-tab" style="text-align:left;">
<div id="pills-en" class="tab-pane fade" role="tabpanel" aria-labelledby="pills-en-tab" style="text-align:left;">
=== General ===
=== General ===


Γραμμή 116: Γραμμή 120:
|-
|-
! School
! School
|
| School of Science
School of Science
|-
|-
! Academic Unit
! Academic Unit
|
| Department of Mathematics
Department of Mathematics
|-
|-
! Level of Studies
! Level of Studies
|
| Undergraduate
Undergraduate
|-
|-
! Course Code
! Course Code
|
| MAY223
MAY223
|-
|-
! Semester
! Semester
Γραμμή 135: Γραμμή 135:
|-
|-
! Course Title
! Course Title
|
| Analytic Geometry
Analytic Geometry
|-
|-
! Independent Teaching Activities
! Independent Teaching Activities
|
| Lectures, laboratory exercises (Weekly Teaching Hours: 5, Credits: 7.5)
Lectures, laboratory exercises (Weekly Teaching Hours: 5, Credits: 7.5)
|-
|-
! [https://regulations.math.uoi.gr/index.php?title=Undergraduate_Department_Course_Types Course Type]
! [https://regulations.math.uoi.gr/index.php?title=Undergraduate_Department_Course_Types Course Type]
|
| General Background
General Background
|-
|-
! Prerequisite Courses
! Prerequisite Courses
Γραμμή 150: Γραμμή 147:
|-
|-
! Language of Instruction and Examinations
! Language of Instruction and Examinations
|
| Greek, English
Greek, English
|-
|-
! Is the Course Offered to Erasmus Students
! Is the Course Offered to Erasmus Students
|
| Yes (in English)
Yes (in English)
|-
|-
! Course Website (URL)
! Course Website (URL)
| See [https://ecourse.uoi.gr/ eCourse], the Learning Management System maintained by the University of Ioannina.
| See [https://ecourse.uoi.gr/ eCourse], the Learning Management System maintained by the University of Ioannina.
|}
|}


=== Learning Outcomes ===
=== Learning Outcomes ===
Γραμμή 178: Γραμμή 174:
* Criticism and self-criticism  
* Criticism and self-criticism  
|}
|}


=== Syllabus ===
=== Syllabus ===


Axioms of Euclidean geometry (plane and space) and proofs of basic propositions. Cartesian model, vectors, linear independence, bases, coordinates and applications. Inner product, cross product, area, volume and determinants. Lines and planes. Geometric transformations (parallel transports, rotations, reflections), isometries and the notion of congruence. Transformation of area and volume under linear transformations. Curves and surfaces of 2nd degree and their classification. Curves, surfaces and parametrizations.
Axioms of Euclidean geometry (plane and space) and proofs of basic propositions. Cartesian model, vectors, linear independence, bases, coordinates and applications. Inner product, cross product, area, volume and determinants. Lines and planes. Geometric transformations (parallel transports, rotations, reflections), isometries and the notion of congruence. Transformation of area and volume under linear transformations. Curves and surfaces of 2nd degree and their classification. Curves, surfaces and parametrizations.


=== Teaching and Learning Methods - Evaluation ===
=== Teaching and Learning Methods - Evaluation ===
Γραμμή 217: Γραμμή 215:
Final written exam in Greek (in case of Erasmus students in English) which includes resolving application problems.
Final written exam in Greek (in case of Erasmus students in English) which includes resolving application problems.
|}
|}


=== Attached Bibliography ===
=== Attached Bibliography ===

Τελευταία αναθεώρηση της 11:23, 16 Σεπτεμβρίου 2025


Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Προπτυχιακό
Κωδικός Μαθήματος MAY223
Εξάμηνο 2
Τίτλος Μαθήματος Αναλυτική Γεωμετρία
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις και Ασκήσεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 5, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Επιστημονικής Περιοχής
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.


Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Το μάθημα αποτελεί το βασικό εισαγωγικό μάθημα στη Γεωμετρία. Στόχος του μαθήματος είναι η μελέτη προβλημάτων της Ευκλείδειας Γεωμετρίας μέσω του Καρτεσιανού μοντέλου αυτής με χρήση εργαλείων από τη Γραμμική Άλγεβρα. καμπυλών του επιπέδου, του χώρου καθώς και των επιφανειών.

Με την επιτυχή ολοκλήρωση του μαθήματος, θα πρέπει ο φοιτητής:

  • να έχει δημιουργήσει τη δεξαμενή βασικών γνώσεων η οποία θα επιτρέπει την απρόσκοπτη παρακολούθηση των λοιπών μαθημάτων γεωμετρίας
  • να εξοικειώσει τους φοιτητές με γνώσεις γεωμετρίας οι οποίες προαπαιτούνται σε μαθήματα του προγράμματος σπουδών όπως για παράδειγμα Απειροστικοί Λογισμοί πολλών μεταβλητών και
  • να αναδείξει την αλληλεπίδραση μεταξύ διάφορων περιοχών των μαθηματικών.
Γενικές Ικανότητες
  • Αυτόνομη Εργασία
  • Ομαδική Εργασία


Περιεχόμενο Μαθήματος

Αξιωματική Ευκλείδεια Γεωμετρία (Επιπεδομετρία και Στερεομετρία) και απόδειξη κάποιων βασικών προτάσεων. Το Καρτεσιανό Μοντέλο. Διανύσματα και πράξεις, γραμμική ανεξαρτησία, βάσεις, συντεταγμένες, εφαρμογές σε γεωμετρικά προβλήματα. Εσωτερικό γινόμενο, διανυσματικό και μεικτό γινόμενο. Εμβαδά-Όγκοι και ορίζουσες (γεωμετρική ερμηνεία ορίζουσας). Ευθείες, επίπεδα. Γεωμετρικοί μετασχηματισμοί (παράλληλες μεταφορές, κατοπτρισμοί, στροφές), ισομετρίες και Γεωμετρική Ισοτιμία (ή Γεωμετρική Ισότητα), εφαρμογές. Μετασχηματισμοί εμβαδών και όγκων μέσω γραμμικών μετασχηματισμών. Καμπύλες κι επιφάνειες 2ου βαθμού και η ταξινόμηση τους. Καμπύλες κι επιφάνειες, παραμετρική παράσταση.

Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Στην τάξη
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις (13Χ5) 65
Αυτοτελής Μελέτη 100
Επίλυση Ασκήσεων - εργασίες 22.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών Γραπτή τελική εξέταση


Συνιστώμενη Βιβλιογραφία

Δείτε την υπηρεσία Εύδοξος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:

General

School School of Science
Academic Unit Department of Mathematics
Level of Studies Undergraduate
Course Code MAY223
Semester 2
Course Title Analytic Geometry
Independent Teaching Activities Lectures, laboratory exercises (Weekly Teaching Hours: 5, Credits: 7.5)
Course Type General Background
Prerequisite Courses -
Language of Instruction and Examinations Greek, English
Is the Course Offered to Erasmus Students Yes (in English)
Course Website (URL) See eCourse, the Learning Management System maintained by the University of Ioannina.


Learning Outcomes

Learning outcomes

It is an introductory course on geometry. The aim is to study problems in geometry using rectangular coordinates and tools based on Linear Algebra.
On completion of the course the student should be familiar with basic notions in geometry like the one of isometry. Furthermore, the student should have a background to allow him to attain more advanced courses on geometry, calculus of several variables and others.

General Competences
  • Working independently
  • Decision-making
  • Production of free, creative and inductive thinking
  • Criticism and self-criticism


Syllabus

Axioms of Euclidean geometry (plane and space) and proofs of basic propositions. Cartesian model, vectors, linear independence, bases, coordinates and applications. Inner product, cross product, area, volume and determinants. Lines and planes. Geometric transformations (parallel transports, rotations, reflections), isometries and the notion of congruence. Transformation of area and volume under linear transformations. Curves and surfaces of 2nd degree and their classification. Curves, surfaces and parametrizations.


Teaching and Learning Methods - Evaluation

Delivery

Classroom (face-to-face)

Use of Information and Communications Technology -
Teaching Methods
Activity Semester Workload
Lectures (13X5) 65
Working independently 100
Exercises-Homeworks 22.5
Course total 187.5
Student Performance Evaluation

Final written exam in Greek (in case of Erasmus students in English) which includes resolving application problems.


Attached Bibliography

See the official Eudoxus site. Books and other resources, not provided by Eudoxus:

  • ---