Undergraduate Compulsory 1005

Από Περιγράμματα - Τμήμα Μαθηματικών
Αναθεώρηση ως προς 17:36, 27 Οκτωβρίου 2024 από τον Outlines-mw-admin (συζήτηση | συνεισφορές) (Νέα σελίδα με '{{DISPLAYTITLE:<span style="position: absolute; clip: rect(1px 1px 1px 1px); clip: rect(1px, 1px, 1px, 1px);">{{FULLPAGENAME}}</span>}} <ul class="nav nav-pills mb-2 justify-content-end" id="pills-tab-lang" role="tablist"> <li class="nav-item"><btn id="pills-gr-tab" data-toggle="pill" class="nav-link active" role="tab" aria-controls="pills-gr" aria-selected="true">#pills-gr|Ελληνικά</btn></li> <li class="nav-item"><btn id="pills-en-tab" data-toggle="pill"...')
(διαφορά) ← Παλαιότερη αναθεώρηση | Τελευταία αναθεώρηση (διαφορά) | Νεότερη αναθεώρηση → (διαφορά)
Μετάβαση σε: πλοήγηση, αναζήτηση


Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Προπτυχιακό
Κωδικός Μαθήματος MAY311
Εξάμηνο 3
Τίτλος Μαθήματος Απειροστικός Λογισμός III
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 5, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Επιστημονικής Περιοχής
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.


Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Το κύριο μαθησιακό αποτέλεσμα είναι η:
  • Διαφορική Ανάλυση Συναρτήσεων περισσότερων μεταβλητών, πραγματικών και διανυσματικών.
  • εξοικείωση με τον Ευκλείδειο χώρο από αναλυτικής (τοπολογικής) άποψης.
  • γνώση προβλημάτων που ανακύπτουν στην ανάλυση σε περισσότερες διαστάσεις.
  • προετοιμασία για χειρισμό συναρτήσεων περισσότερεων μεταβλητών σε πιο ειδικά μαθήματα, όπως Μερικές Διαφορικές εξισώσεις, Διαφορική Γεωμετρία, Μηχανική, Εφαρμογές Μαθηματικών στις φυσικές επιστήμες.
  • ανάπτυξη συνδυαστικών ικανοτήτων γνώσεων από περισσότερες μαθηματικές περιοχές (Γραμμική Άλγεβρα, Αναλυτική Γεωμετρία, Ανάλυση).
Γενικές Ικανότητες
  • Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών.
  • Προσαρμογή σε νέες καταστάσεις.
  • Αυτόνομη εργασία.
  • Άσκηση κριτικής και αυτοκριτικής.
  • Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης.


Περιεχόμενο Μαθήματος

  • Αλγεβρική και τοπολογική δομή του Ευκλείδειου χώρου Rn και γεωμετρική αναπαράσταση του δισδιάστατου και τρισδιάστατου χώρου. Ακολουθίες διανυσμάτων και χρήση τους στην τοπολογία του Rn.
  • Συναρτήσεις περισσοτέρων μεταβλητών (πραγματικές και διανυσματικές). Όρια και συνέχεια συναρτήσεων.
  • Μερικές παράγωγοι. Μερικώς διαφορίσιμες και διαφορίσιμες συναρτήσεις. Παράγωγος κατά κατεύθυνση. Διαφορικοί τελεστές και καμπύλες στον Rn.
  • Μερικές παράγωγοι ανώτερης τάξης. Θεώρημα Taylor. Τοπικά και ολικά ακρότατα πραγματικών συναρτήσεων. Θεώρημα πεπλεγμένης συνάρτησης, θεώρημα αντίστροφης συνάρτησης, ακρότατα υπό συνθήκη.


Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Παράδοση στον πίνακα
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών Στην ιστοσελίδα του μαθήματος διατίθεται διδακτικό υλικό (σημειώσεις και θέματα προηγούμενων εξετάσεων). Οι φοιτητές μπορούν να επικοινωνήσουν μέσω e-mail με τον διδάσκοντα.
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις (13Χ5) 65
Αυτοτελής Μελέτη 100
Επίλυση Ασκήσεων - εργασίες 22.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών Γραπτή εξέταση


Συνιστώμενη Βιβλιογραφία

Δείτε την υπηρεσία Εύδοξος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:

General

School

School of Science

Academic Unit

Department of Mathematics

Level of Studies

Undergraduate

Course Code

MAΥ311

Semester 3
Course Title

Infinitesimal Calculus III

Independent Teaching Activities

Lectures, laboratory exercises (Weekly Teaching Hours: 5, Credits: 7.5)

Course Type

General Background

Prerequisite Courses -
Language of Instruction and Examinations

Greek, English

Is the Course Offered to Erasmus Students

Yes (in English)

Course Website (URL) See eCourse, the Learning Management System maintained by the University of Ioannina.


Learning Outcomes

Learning outcomes

The main learning outcomes are the:

  • differentiability analysis of real- and vector-valued functions of several variables
  • familiarity with the Euclidean space from an analytic (topological) viewpoint
  • knowledge of the problems that arise in Analysis in several dimensions
  • preparation for the treatment of functions of several variables in more specialized courses, e.g., Partial Differential Equations, Differential Geometry, Classical Mechanics, Application of Mathematics in the Sciences
  • development of combination skills concerning knowledge from diverse areas of Mathematics (Linear Algebra, Analytical Geometry, Analysis).
General Competences
  • Search for, analysis and synthesis of data and information, with the use of the necessary technology
  • Adapting to new situations
  • Working independently
  • Criticism and self-criticism
  • Production of free, creative and inductive thinking


Syllabus

  • Algebraic and topological structure of the Euclidean space R^n and geometric representation of the two- and three-dimensional space. Vector-sequences and their use concerning the topology of R^n.
  • Real- and Vector-valued functions of several variables. Limits and continuity of functions.
  • Partial derivatives. Partially differentiable and differentiable functions. Directional derivative. Differential operators and curves in R^n.
  • Higher order partial derivatives. Taylor Theorem. Local and global extrema of real-valued functions. Implicit Function Theorem. Inverse Function Theorem. Constrained extrema.


Teaching and Learning Methods - Evaluation

Delivery

Classroom (face-to-face)

Use of Information and Communications Technology
  • Teaching material is offered at the course's website (notes and older exams)
  • The students may contact the lecturer by e-mail
Teaching Methods
Activity Semester Workload
Lectures (13X5) 65
Working independently 100
Exercises-Homeworks 22.5
Course total 187.5
Student Performance Evaluation

Final written exam in Greek (in case of Erasmus students in English)


Attached Bibliography

See the official Eudoxus site. Books and other resources, not provided by Eudoxus: