Undergraduate Compulsory 1020

Από Περιγράμματα - Τμήμα Μαθηματικών
Αναθεώρηση ως προς 08:47, 29 Δεκεμβρίου 2024 από τον Outlines-mw-admin (συζήτηση | συνεισφορές)
(διαφορά) ← Παλαιότερη αναθεώρηση | Τελευταία αναθεώρηση (διαφορά) | Νεότερη αναθεώρηση → (διαφορά)
Μετάβαση σε: πλοήγηση, αναζήτηση


Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Προπτυχιακό
Κωδικός Μαθήματος MAY522
Εξάμηνο 5
Τίτλος Μαθήματος ΣΤΟΙΧΕΙΑ ΔΙΑΦΟΡΙΚΗΣ ΓΕΩΜΕΤΡΙΑΣ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις και ασκήσεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 5, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Επιστημονικής Περιοχής
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.


Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Το μάθημα αποτελεί το βασικό εισαγωγικό́ μάθημα στη Διαφορική Γεωμετρία. Στόχος του μαθήματος είναι η εισαγωγή στη μελέτη των καμπυλών του επιπέδου, του χώρου καθώς και των επιφανειών. Εισάγονται και μελετώνται θεμελιώδεις έννοιες της Διαφορικής Γεωμετρίας όπως η καμπυλότητα. Η μελέτη κάνει χρήση εργαλείων από τη Γραμμική Άλγεβρα τους Απειροστικούς Λογισμούς. Με την επιτυχή ολοκλήρωση του μαθήματος, θα πρέπει ο φοιτητής να έχει κατανοήσει πλήρως τις έννοιες αυτές καθώς και τη γεωμετρική τους ερμηνεία.
Γενικές Ικανότητες
  • Αυτόνομη Εργασία
  • Ομαδική Εργασία


Περιεχόμενο Μαθήματος

  • Καμπύλες: Επίπεδες καμπύλες, μήκος τόξου, καμπυλότητα, το δίεδρο Frenet, καμπύλες του χώρου, μήκος τόξου, καμπυλότητα, στρέψη, τρίεδρο Frenet, καμπύλες σταθερής κλίσης, σφαιρικές καμπύλες, φυσικές εξισώσεις.
  • Επιφάνειες: Παραμετρική παράσταση, Πρώτη και Δεύτερη θεμελιώδης μορφή, Σφαιρική Απεικόνιση, Καμπυλότητα Gauss και μέση καμπυλότητα, Κύριες και Ασυμπτωτικές διευθύνσεις, το Έξοχο Θεώρημα Gauss, Τύποι Gauss και Weingarten, Αναπτυκτές Επιφάνειες.


Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Στην τάξη
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις (13Χ5) 65
Αυτοτελής Μελέτη 100
Επίλυση Ασκήσεων - εργασίες 22.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών Γραπτή τελική εξέταση


Συνιστώμενη Βιβλιογραφία

Δείτε την υπηρεσία Εύδοξος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:

General

School

School of Science

Academic Unit

Department of Mathematics

Level of Studies

Undergraduate

Course Code

MAY522

Semester 5
Course Title

Elementary differential geometry

Independent Teaching Activities

Lectures (Weekly Teaching Hours: 5, Credits: 7.5)

Course Type

General Background

Prerequisite Courses -
Language of Instruction and Examinations

Greek

Is the Course Offered to Erasmus Students

Yes (in English)

Course Website (URL) See eCourse, the Learning Management System maintained by the University of Ioannina.


Learning Outcomes

Learning outcomes

It is an introductory course on differential geometry. The aim is to introduce and study geometric properties of regular curves (both plane and space) and regular surfaces. Fundamental notions of differential geometry of curves and surfaces are introduced and studied. Among them is the notion of curvature. The study requires tools from Linear Algebra and Calculus of several variables.
Upon completion of the course, the student should be familiar with basic notions of differential geometry like the one of curvature, first and second fundamental form, isometries between surfaces and their geometric meaning.

General Competences
  • Work autonomously
  • Work in teams
  • Develop critical thinking skills


Syllabus

  • Plane curves, arclength, curvature, Frenet frame.
  • Space curves, curvature and torsion, Frenet frame, fundamental theorem of curves.
  • Surfaces, parametrization, Gauss map, Weingarten map, first and second fundamental form, normal curvature, principal and asymptotic directions, Gaussian and mean curvature, minimal surfaces, Theorema Egregium, Gauss and Weingarten formulas, fundamental theorem of surfaces, developable surfaces.


Teaching and Learning Methods - Evaluation

Delivery

Direct

Use of Information and Communications Technology -
Teaching Methods
Activity Semester Workload
Lectures 65
Autonomous study 127.5
Course total 187.5
Student Performance Evaluation

Written final examination


Attached Bibliography

See the official Eudoxus site. Books and other resources, not provided by Eudoxus:

  • Barrett O' Neil, Στοιχειώδης Διαφορική Γεωμετρία, Πανεπιστημιακές Εκδόσεις Κρήτης, 2002
  • Manfredo do Carmo, Differential Geometry of Curves and Surfaces, Prentice-Hall, 1976