Undergraduate Compulsory 1001
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | ΜΑΥ422 |
Εξάμηνο | 4 |
Τίτλος Μαθήματος | Αλγεβρικές Δομές I |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 5, Πιστωτικές Μονάδες: 7.5) |
Τύπος Μαθήματος | Επιστημονικής Περιοχής |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Το μάθημα αποσκοπεί στη μελέτη αλγεβρικών ιδιοτήτων συνόλων τα οποία είναι εφοδιασμένα με μια ή περισσότερες (εσωτερικές) πράξεις. Συνήθως τέτοιου είδους Μαθηματικά αντικείμενα τα ονομάζουμε αλγεβρικές δομές. Θα ασχοληθούμε κυρίως με δύο είδη αλγεβρικών δομών:
Θα διατυπώσουμε διάφορα θεωρήματα που αφορούν την δομή και τις βασικές ιδιότητες ομάδων και δακτυλίων με έμφαση στην έννοια τού ισομορφισμού ομάδων ή δακτυλίων. Από τη σκοπιά τις Άλγεβρας δύο αλγεβρικές δομές που είναι ισόμορφες έχουν ακριβώς τις ίδιες αλγεβρικές ιδιότητες. Επομένως ως άμεση συνέπεια έχουμε ότι τα συμπεράσματα τα οποία ισχύουν για μια αλγεβρική δομή ισχύουν και για οποιαδήποτε ισόμορφή της. Στο τέλος τού μαθήματος περιμένουμε από τον φοιτητή να έχει κατανοήσει τους ορισμούς και τα βασικά θεωρήματα, να έχει κατανοήσει πως αυτά εφαρμόζονται σε διακεκριμένα παραδείγματα, να είναι σε θέση να τα εφαρμόζει για την εξαγωγή νέων στοιχειωδών συμπερασμάτων, και τέλος να μπορεί να εκτελεί ορισμένους (όχι τόσο προφανείς) υπολογισμούς. |
---|---|
Γενικές Ικανότητες |
Το μάθημα αποσκοπεί στο να μπορεί ο πτυχιούχος να αποκτήσει την ικανότητα στην ανάλυση και σύνθεση βασικών γνώσεων της Σύγχρονης Άλγεβρας. Ερχόμενος ο πτυχιούχος για πρώτη φορά σε επαφή με αφηρημένες έννοιες της Άλγεβρας οι οποίες έχουν σημαντικές εφαρμογές, προάγεται η δημιουργική και επαγωγική σκέψη του πτυχιούχου, και η ικανότητά του να εφαρμόζει αφηρημένες γνώσεις σε διάφορα πεδία. |
Περιεχόμενο Μαθήματος
- Επενθυμίσεις: Σύνολα, Απεικονίσεις, Σχέσεις Ισοδυναμίας, Διαμερίσεις, Πράξεις.
- Ομάδες - Ομάδες Μεταθέσεων.
- Κυκλικές Ομάδες - Γεννήτορες.
- Πλευρικές Κλάσεις - Θεώρημα Lagrange.
- Ομομορφισμοί Ομάδων - Ομάδες Πηλίκα.
- Δακτύλιοι και Σώματα - Ακέραιες Περιοχές.
- Θεωρήματα Fermat και Euler.
- Δακτύλιοι Πολυωνύμων - Ομομορφισμοί Δακτυλίων.
- Δακτύλιοι Πηλίκα - Πρώτα και Μεγιστοτικά Ιδεώδη.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή εξέταση στο τέλος του εξαμήνου στα Ελληνικά με ερωτήσεις και θέματα ανάπτυξης και επίλυση προβλημάτων. |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
General
School |
School of Science |
---|---|
Academic Unit |
Department of Mathematics |
Level of Studies |
Undergraduate |
Course Code |
MAY422 |
Semester | 4 |
Course Title |
Algebraic Structures I |
Independent Teaching Activities |
Lectures (Weekly Teaching Hours: 5, Credits: 7.5) |
Course Type |
General Background |
Prerequisite Courses | - |
Language of Instruction and Examinations |
Greek, English |
Is the Course Offered to Erasmus Students |
Yes (in English) |
Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
Learning outcomes |
The course aims to introduce the students to the study algebraic properties of sets which are equipped with one or more (binary) operations. Such mathematical objects are called algebraic structures. We will mainly deal with two types of algebraic structures:
We will formulate various theorems concerning the structure and basic properties of groups and rings emphasizing the concept of isomorphism of groups or rings. From the perspective of Algebra two algebraic structures which are isomorphic, they have exactly the same algebraic properties. As a direct consequence, results concerning an algebraic structure are valid in any isomorphic algebraic structure. In the course we present several examples illuminating various notions of symmetry. It should be noted that the notion of symmetry is the central theme which underlies the concept of group/ring.
|
---|---|
General Competences |
The course aims to enable the undergraduate student to acquire the ability to analyse and synthesize basic knowledge of the theory of algebraic structures, in particular of the general theory of Groups and Rings, which form an important part of modern algebra. The contact of the undergraduate student with the ideas and concepts of the theory of groups and rings, (a) promotes the creative, analytical and deductive thinking and the ability to work independently, (b) improves his critical thinking and his ability to apply abstract knowledge in various field. |
Syllabus
- Preliminaries: Sets, functions, equivalence relations, partitions, (binary) operations.
- Groups – Permutation groups.
- Cyclic groups – generators.
- Cosets with respect to a subgroup – Lagrange’s Theorem.
- Homomorphisms of groups – Quotient groups.
- Rings and fields - Integral domains.
- The theorems of Fermat and Euler.
- Polynomial rings – Homomorphisms of Rings.
- Quotient rings – Prime and maximal ideals.
Teaching and Learning Methods - Evaluation
Delivery |
Classroom (face to face) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology |
Teaching Material: Teaching material in electronic form available at the home page of the course.
| ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation |
Final written exam in Greek (in case of Erasmus students, in English) which includes analysis of theoretical topics and resolving application problems. |
Attached Bibliography
See the official Eudoxus site. Books and other resources, not provided by Eudoxus:
- ---