Undergraduate Compulsory 1004

Από Περιγράμματα - Τμήμα Μαθηματικών
Μετάβαση σε: πλοήγηση, αναζήτηση


Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Προπτυχιακό
Κωδικός Μαθήματος MAY211
Εξάμηνο 2
Τίτλος Μαθήματος Απειροστικός Λογισμός II
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 5, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Επιστημονικής Περιοχής
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.


Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Το μάθημα αυτό, που αποτελεί συνέχεια του μαθήματος «Απειροστικός Λογισμός Ι» σκοπεύει στη γνωριμία του φοιτητή με περαιτέρω έννοιες της Μαθηματικής Ανάλυσης σε θεωρητικό και πρακτικό επίπεδο και τη ανάπτυξη υπολογιστικής ικανότητας. Μέσα από το μάθημα αυτό ο/η φοιτητής/τρια:
  • Διδάσκεται την έννοια της σύγκλισης και της απόλυτης σύγκλισης σειράς και τα βασικά κριτήρια και θεωρήματα που αφορούν τις έννοιες αυτές και αποκτά την ικανότητα να υπολογίζει αθροίσματα σειρών. Εισάγεται στην έννοια των δυναμοσειρών και μαθαίνει να υπολογίζει την ακτίνα σύγκλισης μιας δυναμοσειράς.
  • Μαθαίνει την έννοια της ομοιόμορφης συνέχειας και να διακρίνει τη διαφορά της έννοιας αυτής από τη συνέχεια.
  • Διδάσκεται τον ορισμό του ολοκληρώματος Riemann και τη θεωρία που σχετίζεται με αυτό. Αποκτά γνώση των τεχνικών ολοκλήρωσης και την ικανότητα να υπολογίζει μεγάλη ποικιλία ολοκληρωμάτων.
  • Διδάσκεται το θεώρημα Taylor, τη θεωρία που αφορά τις σειρές Taylor και μαθαίνει να αναπτύσσει σε σειρά Taylor δοθείσα συνάρτηση.
Γενικές Ικανότητες Το μάθημα προάγει την επαγωγική, αναλυτική και δημιουργική σκέψη, την αυτενέργεια του φοιτητή και αναπτύσσει την υπολογιστική ικανότητά του. Αποσκοπεί στο να αποκτήσει ο πρωτοετής φοιτητής το υπόβαθρο και την πρακτική σκέψη για να χειρίζεται έννοιες της Μαθηματικής Ανάλυσης.


Περιεχόμενο Μαθήματος

  • Σειρές, σύγκλιση σειρών και κριτήρια σύγκλισης. Κριτήριo Dirichlet, κριτήριο λόγου, κριτήριο ρίζας, κριτήριο ολοκληρώματος. Εναλλάσουσες σειρές και θεώρημα Leibnitz. Απόλυτη σύγκλιση σειράς, αναδιατάξεις σειρών. Δυναμοσειρές, ακτίνα σύγκλισης δυναμοσειρών.
  • Ομοιόμορφη συνέχεια συναρτήσεων, ορισμός και ιδιότητες. Χαρακτηρισμός ομοιόμορφης συνέχειας με ακολουθίες. Ομοιόμορφη συνέχεια συνεχών συναρτήσεων ορισμένων σε κλειστό διάστημα.
  • Ολοκλήρωμα Riemann, ορισμός για φραγμένες συναρτήσεις σε κλειστό διάστημα. Κριτήριο Riemann, ολοκληρωσιμότητα των συνεχών συναρτήσεων. Αόριστο ολοκλήρωμα και θεμελιώδες θεώρημα του Απειροστικού Λογισμού. Θεώρημα μέσης τιμής του ολοκληρωτικού λογισμού. Παραγοντική ολοκλήρωση και ολοκλήρωση με αντικατάσταση. Ολοκληρώματα βασικών συναρτήσεων, ολοκλήρωση ρητών συναρτήσεων. Εφαρμογές του ολοκληρώματος. Γενικευμένα ολοκληρώματα και κριτήρια σύγκλισης αυτών. Σχέση γενικευμένων ολοκληρωμάτων και σειρών.
  • Πολυώνυμα Taylor, θεώρημα Taylor, μορφές του υπολοίπου Taylor. Σειρές Taylor και αναπτύγματα σε σειρά Taylor βασικών συναρτήσεων.


Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Η διδασκαλία γίνεται αποκλειστικά με διαλέξεις στον πίνακα από το διδάσκοντα. Η θεωρητική φύση του μαθήματος δεν επιτρέπει κάτι διαφορετικό.
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών Επικοινωνία των φοιτητών με τους διδάσκοντες μέσω ηλεκτρονικού ταχυδρομείου.
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις (13Χ5) 65
Αυτοτελής Μελέτη 100
Επίλυση Ασκήσεων - εργασίες 22.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών Γραπτή εξέταση στο τέλος του εξαμήνου (υποχρεωτική). Παράδοση ασκήσεων στη διάρκεια του εξαμήνου (προαιρετική).


Συνιστώμενη Βιβλιογραφία

Δείτε την υπηρεσία Εύδοξος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:

General

School School of Science
Academic Unit Department of Mathematics
Level of Studies Undergraduate
Course Code MAY211
Semester 2
Course Title Infinitesimal Calculus II
Independent Teaching Activities Lectures, laboratory exercises (Weekly Teaching Hours: 5, Credits: 7.5)
Course Type General Background
Prerequisite Courses None (from the typical point of view). Without the knowledge earned from the course “Infinitesimal Calculus I” will be nearly impossible to follow this course.
Language of Instruction and Examinations Greek
Is the Course Offered to Erasmus Students Yes (exams in English are provided for foreign students)
Course Website (URL) See eCourse, the Learning Management System maintained by the University of Ioannina.


Learning Outcomes

Learning outcomes

This course is the sequel of the course “Infinitesimal Calculus I”. The student will get in contact with more notions and techniques in the branch of Analysis. In this course the students:

  • Are taught the notions of convergence and absolute convergence of series. They learn criteria and theorems concerning these notions as well as they learn how to compute sums of series. They are introduced in the notion of power series and they learn how to calculate the radius of convergence of a power series.
  • Are taught the notion of uniform continuity and they learn to distinguish this notion from continuity.
  • Are taught the notion of Riemann integral and various theorems concerning this notion. They also learn various integrating techniques.
  • Are taught Taylor’s theorem and they learn to write a given function as a Taylor series.
General Competences

The course provides inductive and analytical thinking, the students evolve their computational skills and they get knowledge necessary for other courses during their undergraduate studies.


Syllabus

Series, convergence of series and criteria for convergence of series. Dirichlet’s criterion, D’ Alembert’s criterion, Cauchy’s criterion, integral criterion. Series with alternating signs and Leibnitz’s theorem. Absolute convergence and reordering of series, Power series, radius of convergence of power series.
Uniform continuity, definition and properties. Characterization of uniform continuity via sequences. Uniform continuity of continuous functions defined on closed intervals.
Riemann integral, definition for bounded functions defined on closed intervals. Riemann’s criterion, integrability of continuous functions. Indefinite integral and the Fundamental theorem of Calculus. Mean Value theorem of integral calculus, integration by parts, integration by substitution. Integrals of basic functions, integrations of rational functions. Applications of integrals, generalized integrals, relation between generalized integrals and series.
Taylor polynomials, Taylor’s Theorem, forms of the Taylor remainder. Taylor series and expansions of some basic functions as Taylor series.


Teaching and Learning Methods - Evaluation

Delivery

Due to the theoretical nature of this course the teaching is exclusively given in the blackboard by the teacher.

Use of Information and Communications Technology

The students may contact their teachers by electronic means, i.e. by e-mail.

Teaching Methods
Activity Semester Workload
Lectures (13x5) 65
Solutions of exercises 22.5
Individual study 100
Course total 187.5
Student Performance Evaluation
  • Exams in the end of the semester (mandatory).
  • Assignments of exercises during the semester (optional).


Attached Bibliography

See the official Eudoxus site. Books and other resources, not provided by Eudoxus:

  • Thomas, Απειροστικός Λογισμός, R.L. Finney, M.D. Weir, F.R.Giordano, Πανεπιστημιακές Εκδόσεις Κρήτης, (Απόδοση στα ελληνικά: Μ. Αντωνογιαννάκης).