Undergraduate Compulsory 1010

Από Περιγράμματα - Τμήμα Μαθηματικών
Μετάβαση σε: πλοήγηση, αναζήτηση


Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Προπτυχιακό
Κωδικός Μαθήματος MAY341
Εξάμηνο 3
Τίτλος Μαθήματος Εισαγωγή στην Αριθμητική Ανάλυση
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 4, Πιστωτικές Μονάδες: 7.5)
Τύπος Μαθήματος Επιστημονικής Περιοχής
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.


Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα είναι σε θέση να:
  1. αναγνωρίζουν βασικές αριθμητικές μεθόδους από μια ποικιλία μαθηματικών προβλημάτων και τις εφαρμόζουν για την επίλυση πραγματικών προβλημάτων.
  2. εφαρμόζουν μια ποικιλία θεωρητικών τεχνικών για να μελετούν και να εκτιμούν τα σφάλματα αριθμητικών μεθόδων από μια σειρά μαθηματικών περιοχών.
  3. αναγνωρίζουν τους περιορισμούς που θέτει η αριθμητική πεπερασμένης ακρίβειας κατά τους υπολογισμούς, και να κατανοούν την έννοια της ευστάθειας των αριθμητικών μεθόδων.
  4. αξιολογούν την απόδοση αριθμητικών μεθόδων ως προς την ακρίβειά τους και τη δυνατότητα εφαρμογής τους.
Γενικές Ικανότητες
  • Αναζήτηση, ανάλυση και σύνθεση δεδομένων και πληροφοριών, με τη χρήση και των απαραίτητων τεχνολογιών.
  • Προσαρμογή σε νέες καταστάσεις.
  • Αυτόνομη εργασία.
  • Προαγωγή της αναλυτικής και συνθετικής σκέψης.
  • Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης.


Περιεχόμενο Μαθήματος

  • Θεωρία σφαλμάτων.
  • Αριθμητική επίλυση μη γραμμικών εξισώσεων: γενικές επαναληπτικές μέθοδοι, η μέθοδος του Νεύτωνα, η μέθοδος της Τέμνουσας.
  • Αριθμητική επίλυση γραμμικών συστημάτων: νόρμες πινάκων και δείκτης κατάστασης πίνακα, άμεσες μέθοδοι (απαλοιφή του Gauss και παραλλαγές της, LU παραγοντοποίηση), και επαναληπτικές μέθοδοι (Jacobi, Gauss-Seidel)).
  • Προσέγγιση συναρτήσεων με πολυωνυμική παρεμβολή: παρεμβολή τύπου Lagrange και τύπου Hermite, σφάλματα προσέγγισης.
  • Αριθμητική ολοκλήρωση: απλοί και σύνθετοι τύποι αριθμητικής ολοκλήρωσης, κανόνας του τραπεζίου, κανόνας του Simpson, σφάλματα κατά την αριθμητική ολοκλήρωση.


Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Πρόσωπο με πρόσωπο.
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
  • Χρήση ταμπλέτας για την παράδοση διδασκαλίας. Οι σημειώσεις από την τάξη γίνονται διαθέσιμες σε μορφή pdf στο ecourse.
  • Παροχή υλικού μελέτης μέσω του ecourse.
  • Χρήση διαδικτυακών κουίζ (ecourse) που στοχεύουν στην ενίσχυση της συμμετοχής των φοιτητών στο μάθημα..
  • Παροχή πρότυπων λύσεων κάποιων ασκήσεων σε μορφή podcast.
  • Επικοινωνία με τους φοιτητές χρησιμοποιώντας e-mail, και τις πλατφόρμες ecourse και Teams.
  • Χρήση λογισμικών πακέτων (python ή Matlab ή Octave), για ενίσχυση της μάθησης και της κατανόησης με επίδειξη κατάλληλων αριθμητικών παραδειγμάτων στις διαλέξεις.
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις (13Χ4) 52
Αυτοτελής Μελέτη 100
Επίλυση Ασκήσεων - Απάντηση διαδικτυακών κουίζ 35.5
Σύνολο Μαθήματος 187.5
Αξιολόγηση Φοιτητών Γραπτή εξέταση στα Ελληνικά (σε περίπτωση φοιτητών Erasmus στην Αγγλική γλώσσα). (100% του τελικού βαθμού, κάλυψη μαθησιακών αποτελεσμάτων 1-4)


Συνιστώμενη Βιβλιογραφία

Δείτε την υπηρεσία Εύδοξος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:

General

School

School of Science

Academic Unit

Department of Mathematics

Level of Studies

Undergraduate

Course Code

ΜΑY341

Semester 3
Course Title

Introduction to Numerical Analysis

Independent Teaching Activities

Lectures (Weekly Teaching Hours: 4, Credits: 7.5)

Course Type

General Background

Prerequisite Courses -
Language of Instruction and Examinations

Greek

Is the Course Offered to Erasmus Students

Yes (in English)

Course Website (URL) See eCourse, the Learning Management System maintained by the University of Ioannina.


Learning Outcomes

Learning outcomes

Upon successful completion of this course, students will be able to:

  1. recognise key numerical methods from a variety of maths problems and apply them for the solution of actual problems.
  2. apply a variety of theoretical techniques for deriving and analyzing the error of numerical approximations.
  3. analyse and evaluate the accuracy of common numerical methods.
  4. evaluate the performance of numerical methods in terms of accuracy, efficacy, and applicability.
General Competences
  • Search for, analysis and synthesis of data and information, with the use of the necessary technology.
  • Adapting to new situations.
  • Working independently.
  • Production of free, creative, and inductive thinking.
  • Promotion of analytical and synthetic thinking.


Syllabus

  • Error Analysis.
  • Numerical solution of nonlinear equations: iterative methods, the fixed-point theorem, Newton’s method, the secant method.
  • Numerical solution of linear systems: Matrix norms and conditioning. Direct Methods (Gauss elimination, LU factorization). Iterative methods, convergence, and examples of iterative methods (Jacobi, Gauss-Seidel).
  • Polynomial interpolation: Lagrange and Hermite interpolation. Linear splines. Error analysis of interpolation.
  • Numerical integration: Newton-Cotes quadrature formula (the trapezoidal rule and Simpson’s rule). Error analysis of numerical integration.


Teaching and Learning Methods - Evaluation

Delivery

Face-to-face

Use of Information and Communications Technology
  • Use of a tablet device to deliver teaching. Lecture materials in pdf-format are made available to students, for later review, on Moodle learning platform.
  • Provision of study materials in Moodle e-learning platform.
  • Use of online quizzes in Moodle platform, which aim to enhance student engagement and motivation in learning.
  • Provision of model solutions for some exercises in podcast format.
  • Communication with students through e-mails, Moodle platform and Microsoft teams.
  • Use of sophisticated software (python or Octave) to enhance students’ understanding and learning by demonstrating numerical examples in the classroom.
Teaching Methods
Activity Semester Workload
Lectures (13X4) 52
Study and analysis of bibliography 100
Exercises-online Quizzes 35.5
Course total 187.5
Student Performance Evaluation

Written examination (Weighting 100%, addressing learning outcomes 1-4)


Attached Bibliography

See the official Eudoxus site. Books and other resources, not provided by Eudoxus:

  • "An Introduction to Numerical Analysis", E. Süli, and D. Mayers, Cambridge University Press, Cambridge, 2003.