Undergraduate Compulsory 1010
Από Περιγράμματα - Τμήμα Μαθηματικών
Γενικά
| Σχολή | Σχολή Θετικών Επιστημών |
|---|---|
| Τμήμα | Τμήμα Μαθηματικών |
| Επίπεδο Σπουδών | Προπτυχιακό |
| Κωδικός Μαθήματος | MAY341 |
| Εξάμηνο | 3 |
| Τίτλος Μαθήματος | Εισαγωγή στην Αριθμητική Ανάλυση |
| Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 4, Πιστωτικές Μονάδες: 7.5) |
| Τύπος Μαθήματος | Επιστημονικής Περιοχής |
| Προαπαιτούμενα Μαθήματα | |
| Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
| Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
| Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
| Μαθησιακά Αποτελέσματα | Μετά την επιτυχή ολοκλήρωση του μαθήματος, οι φοιτητές θα είναι σε θέση να:
|
|---|---|
| Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
- Θεωρία σφαλμάτων.
- Αριθμητική επίλυση μη γραμμικών εξισώσεων: γενικές επαναληπτικές μέθοδοι, η μέθοδος του Νεύτωνα, η μέθοδος της Τέμνουσας.
- Αριθμητική επίλυση γραμμικών συστημάτων: νόρμες πινάκων και δείκτης κατάστασης πίνακα, άμεσες μέθοδοι (απαλοιφή του Gauss και παραλλαγές της, LU παραγοντοποίηση), και επαναληπτικές μέθοδοι (Jacobi, Gauss-Seidel)).
- Προσέγγιση συναρτήσεων με πολυωνυμική παρεμβολή: παρεμβολή τύπου Lagrange και τύπου Hermite, σφάλματα προσέγγισης.
- Αριθμητική ολοκλήρωση: απλοί και σύνθετοι τύποι αριθμητικής ολοκλήρωσης, κανόνας του τραπεζίου, κανόνας του Simpson, σφάλματα κατά την αριθμητική ολοκλήρωση.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
| Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο. | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών |
| ||||||||||
| Οργάνωση Διδασκαλίας |
| ||||||||||
| Αξιολόγηση Φοιτητών | Γραπτή εξέταση στα Ελληνικά (σε περίπτωση φοιτητών Erasmus στην Αγγλική γλώσσα). (100% του τελικού βαθμού, κάλυψη μαθησιακών αποτελεσμάτων 1-4) |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
General
| School |
School of Science |
|---|---|
| Academic Unit |
Department of Mathematics |
| Level of Studies |
Undergraduate |
| Course Code |
ΜΑY341 |
| Semester | 3 |
| Course Title |
Introduction to Numerical Analysis |
| Independent Teaching Activities |
Lectures (Weekly Teaching Hours: 4, Credits: 7.5) |
| Course Type |
General Background |
| Prerequisite Courses | - |
| Language of Instruction and Examinations |
Greek |
| Is the Course Offered to Erasmus Students |
Yes (in English) |
| Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
| Learning outcomes |
Upon successful completion of this course, students will be able to:
|
|---|---|
| General Competences |
|
Syllabus
- Error Analysis.
- Numerical solution of nonlinear equations: iterative methods, the fixed-point theorem, Newton’s method, the secant method.
- Numerical solution of linear systems: Matrix norms and conditioning. Direct Methods (Gauss elimination, LU factorization). Iterative methods, convergence, and examples of iterative methods (Jacobi, Gauss-Seidel).
- Polynomial interpolation: Lagrange and Hermite interpolation. Linear splines. Error analysis of interpolation.
- Numerical integration: Newton-Cotes quadrature formula (the trapezoidal rule and Simpson’s rule). Error analysis of numerical integration.
Teaching and Learning Methods - Evaluation
| Delivery |
Face-to-face | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Use of Information and Communications Technology |
| ||||||||||
| Teaching Methods |
| ||||||||||
| Student Performance Evaluation |
Written examination (Weighting 100%, addressing learning outcomes 1-4) |
Attached Bibliography
See the official Eudoxus site. Books and other resources, not provided by Eudoxus:
- "An Introduction to Numerical Analysis", E. Süli, and D. Mayers, Cambridge University Press, Cambridge, 2003.