Undergraduate Elective 1001
Από Περιγράμματα - Τμήμα Μαθηματικών
Γενικά
| Σχολή | Σχολή Θετικών Επιστημών |
|---|---|
| Τμήμα | Τμήμα Μαθηματικών |
| Επίπεδο Σπουδών | Προπτυχιακό |
| Κωδικός Μαθήματος | MAE724 |
| Εξάμηνο | 7 |
| Τίτλος Μαθήματος | ΑΛΓΕΒΡΙΚΕΣ ΔΟΜΕΣ ΙΙ |
| Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
| Τύπος Μαθήματος | Ειδίκευσης |
| Προαπαιτούμενα Μαθήματα | |
| Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
| Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | Ναι (στην Αγγλική γλώσσα) |
| Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
| Μαθησιακά Αποτελέσματα | Με την ολοκλήρωση του μαθήματος, οι φοιτητές θα είναι σε θέση:
|
|---|---|
| Γενικές Ικανότητες | Το μάθημα αποσκοπεί στο να μπορεί ο πτυχιούχος να αποκτήσει την ικανότητα στην ανάλυση και σύνθεση γνώσεων των Αλγεβρικών Δομών και προάγει την δημιουργική και επαγωγική σκέψη. |
Περιεχόμενο Μαθήματος
- Δακτύλιοι.
- Περιοχές και Σώματα Ομομορφισμοί και Ιδεώδη.
- Δακτύλιοι Πηλίκων.
- Πολυωνυμικοί Δακτύλιοι υπεράνω Σωμάτων.
- Πρώτα και Μεγιστοτικά Ιδεώδη.
- Ανάγωγα Πολυώνυμα.
- Οι Κλασικοί Τύποι Επίλυσης Πολυωνυμικών Εξισώσεων.
- Σώματα Διάσπασης.
- Η Ομάδα Galois.
- Οι ρίζες της Μονάδας.
- Επιλυσιμότητα με Ριζικά.
- Ανεξαρτησία Χαρακτήρων.
- Επεκτάσεις Galois.
- Το Θεμελιώδες Θεώρημα Galois.
- Διακρίνουσες.
- Πολυώνυμα Βαθμού ≤4 και Ομάδες Galois.
- Γεωμετρικές Κατασκευές με Κανόνα και Διαβήτη.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
| Τρόπος Παράδοσης | Πρόσωπο με πρόσωπο | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
| Οργάνωση Διδασκαλίας |
| ||||||||||
| Αξιολόγηση Φοιτητών | Γραπτή εξέταση στο τέλος του εξαμήνου στα Ελληνικά με ερωτήσεις ανάπτυξης και επίλυση προβλημάτων. |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
General
| School | School of Science |
|---|---|
| Academic Unit | Department of Mathematics |
| Level of Studies | Undergraduate |
| Course Code | MAE724 |
| Semester | 7 |
| Course Title | Algebraic Structures II |
| Independent Teaching Activities | Lectures (Weekly Teaching Hours: 3, Credits: 6) |
| Course Type | Special Background |
| Prerequisite Courses | - |
| Language of Instruction and Examinations |
Greek |
| Is the Course Offered to Erasmus Students |
Yes |
| Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
| Learning outcomes |
The students will acquire with the successful completion of the course
|
|---|---|
| General Competences |
The course aim is for the student to acquire the ability in analysis and synthesis of knowledge in Field Theory and produces free, creative and inductive thinking. |
Syllabus
- Rings
- Integral Domains, Fields, Homomorphisms and Ideals
- Quotient Rings
- Polynomial Rings over fields
- Prime and Maximal Ideals
- Irreducible Polynomials
- The classical methods of solving polynomial equations
- Splitting fields
- The Galois Group
- Roots of unity
- Solvability by Radicals
- Independence of characters
- Galois extensions
- The Fundamental Theorem of Galois Theory
- Discriminants
- Polynomials of degree less than 4 and Galois Groups
- Ruler and Compass constructions
Teaching and Learning Methods - Evaluation
| Delivery |
Classroom (face-to-face) | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|
| Use of Information and Communications Technology | - | ||||||||||
| Teaching Methods |
| ||||||||||
| Student Performance Evaluation |
Final written exam in Greek (in case of Erasmus students in English) which includes resolving application problems. |
Attached Bibliography
See the official Eudoxus site. Books and other resources, not provided by Eudoxus:
- M. Holz: "Repetition in Algebra", Greek Edition, Symmetria Publishing Company, (2015).
- Th. Theochari-Apostolidou and C. M. A. Charalambous: "Galois Theory", (Greek), Kallipos Publishing (2015).