Undergraduate Elective 1041
Γενικά
Σχολή | Σχολή Θετικών Επιστημών |
---|---|
Τμήμα | Τμήμα Μαθηματικών |
Επίπεδο Σπουδών | Προπτυχιακό |
Κωδικός Μαθήματος | MAE827 |
Εξάμηνο | 8 |
Τίτλος Μαθήματος | ΕΥΚΛΕΙΔΕΙΑ ΚΑΙ ΜΗ ΕΥΚΛΕΙΔΕΙΕΣ ΓΕΩΜΕΤΡΙΕΣ |
Αυτοτελείς Διδακτικές Δραστηριότητες | Διαλέξεις και ασκήσεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6) |
Τύπος Μαθήματος | Ειδίκευσης |
Προαπαιτούμενα Μαθήματα | |
Γλώσσα Διδασκαλίας και Εξετάσεων | Ελληνική |
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus | |
Ηλεκτρονική Σελίδα Μαθήματος (URL) | Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων. |
Μαθησιακά Αποτελέσματα
Μαθησιακά Αποτελέσματα | Στόχος του μαθήματος είναι να εξηγήσει πως οι προσπάθειες για την απόδειξη του περίφημου πέμπτου αιτήματος του Ευκλείδη (αιτήματος παραλληλίας) οδήγησαν στην επινόηση των μη Ευκλείδειων Γεωμετριών. Με την επιτυχή ολοκλήρωση του μαθήματος, θα πρέπει ο φοιτητής να έχει κατανοήσει πλήρως τη θεμελίωση της Ευκλείδειας αλλά και των μη Ευκλείδειων Γεωμετριών. |
---|---|
Γενικές Ικανότητες |
|
Περιεχόμενο Μαθήματος
Ευκλείδια Γεωμετρία. Αξιώματα, το αξίωμα της παραλληλίας. Συμβιβαστότητα των αξιωμάτων. Απόλυτη Γεωμετρία. Ανεξαρτησία του αξιώματος της Παραλληλίας. Υπερβολική Γεωμετρία. Το μοντέλο Poincarẻ. Στοιχεία από τη Σφαιρική Γεωμετρία.
Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση
Τρόπος Παράδοσης | Στην τάξη | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών | |||||||||||
Οργάνωση Διδασκαλίας |
| ||||||||||
Αξιολόγηση Φοιτητών | Γραπτή τελική εξέταση |
Συνιστώμενη Βιβλιογραφία
Δείτε την υπηρεσία Εύδοξος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:
General
School | School of Science |
---|---|
Academic Unit | Department of Mathematics |
Level of Studies | Undergraduate |
Course Code | MAE827 |
Semester | 8 |
Course Title | Euclidean and Non Euclidean Geometries |
Independent Teaching Activities | Lectures, laboratory exercises (Weekly Teaching Hours: 3, Credits: 6) |
Course Type | Special Background |
Prerequisite Courses | - |
Language of Instruction and Examinations | Greek, English |
Is the Course Offered to Erasmus Students | Yes |
Course Website (URL) | See eCourse, the Learning Management System maintained by the University of Ioannina. |
Learning Outcomes
Learning outcomes |
This is an introductory course on non Euclidean geometries. The aim is to study how the attempt to prove Euclid's fifth postulate led the way to non Euclidean geometries. On completion of the course the student should be familiar with the foundations of Euclidean and non Euclidean geometries. |
---|---|
General Competences |
|
Syllabus
Euclid's geometry, Hilbert's system of axioms, the fifth postulate, compatibility of axioms, neutral geometry, independence of the fifth postulate, hyperbolic geometry, Poincarẻ model, spherical geometry, Platonic solids.
Teaching and Learning Methods - Evaluation
Delivery |
Classroom (face-to-face) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Use of Information and Communications Technology | - | ||||||||||
Teaching Methods |
| ||||||||||
Student Performance Evaluation |
Final written exam in Greek (in case of Erasmus students in English) which includes resolving application problems. |
Attached Bibliography
See the official Eudoxus site. Books and other resources, not provided by Eudoxus:
- Π. Πάμφιλου, Γεωμετρία, Εκδόσεις Τροχαλία, 1989.
- M.J. Greenberg, Euclidean and non-Euclidean Geometry-Development and History, W.H. Freedmann and Company, 1973.
- R. Hartshorne, Geometry: Euclid and beyond, Springer, 2000.
- H. Meschkowski, Noneuclidean Geometry, Academic Press, 1964.