Undergraduate Elective 1041

Από Περιγράμματα - Τμήμα Μαθηματικών
Μετάβαση σε: πλοήγηση, αναζήτηση


Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Προπτυχιακό
Κωδικός Μαθήματος MAE827
Εξάμηνο 8
Τίτλος Μαθήματος ΕΥΚΛΕΙΔΕΙΑ ΚΑΙ ΜΗ ΕΥΚΛΕΙΔΕΙΕΣ ΓΕΩΜΕΤΡΙΕΣ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις και ασκήσεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
Τύπος Μαθήματος Ειδίκευσης
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.


Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Στόχος του μαθήματος είναι να εξηγήσει πως οι προσπάθειες για την απόδειξη του περίφημου πέμπτου αιτήματος του Ευκλείδη (αιτήματος παραλληλίας) οδήγησαν στην επινόηση των μη Ευκλείδειων Γεωμετριών. Με την επιτυχή ολοκλήρωση του μαθήματος, θα πρέπει ο φοιτητής να έχει κατανοήσει πλήρως τη θεμελίωση της Ευκλείδειας αλλά και των μη Ευκλείδειων Γεωμετριών.
Γενικές Ικανότητες
  • Αυτόνομη Εργασία
  • Ομαδική Εργασία


Περιεχόμενο Μαθήματος

Ευκλείδια Γεωμετρία. Αξιώματα, το αξίωμα της παραλληλίας. Συμβιβαστότητα των αξιωμάτων. Απόλυτη Γεωμετρία. Ανεξαρτησία του αξιώματος της Παραλληλίας. Υπερβολική Γεωμετρία. Το μοντέλο Poincarẻ. Στοιχεία από τη Σφαιρική Γεωμετρία.


Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Στην τάξη
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις (13Χ3) 39
Αυτοτελής Μελέτη 78
Επίλυση Ασκήσεων - εργασίες 33
Σύνολο Μαθήματος 150
Αξιολόγηση Φοιτητών Γραπτή τελική εξέταση


Συνιστώμενη Βιβλιογραφία

Δείτε την υπηρεσία Εύδοξος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:

General

School School of Science
Academic Unit Department of Mathematics
Level of Studies Undergraduate
Course Code MAE827
Semester 8
Course Title Euclidean and Non Euclidean Geometries
Independent Teaching Activities Lectures, laboratory exercises (Weekly Teaching Hours: 3, Credits: 6)
Course Type Special Background
Prerequisite Courses -
Language of Instruction and Examinations Greek, English
Is the Course Offered to Erasmus Students Yes
Course Website (URL) See eCourse, the Learning Management System maintained by the University of Ioannina.


Learning Outcomes

Learning outcomes

This is an introductory course on non Euclidean geometries. The aim is to study how the attempt to prove Euclid's fifth postulate led the way to non Euclidean geometries. On completion of the course the student should be familiar with the foundations of Euclidean and non Euclidean geometries.

General Competences
  • Working independently
  • Decision-making
  • Production of free, creative and inductive thinking
  • Criticism and self-criticism


Syllabus

Euclid's geometry, Hilbert's system of axioms, the fifth postulate, compatibility of axioms, neutral geometry, independence of the fifth postulate, hyperbolic geometry, Poincarẻ model, spherical geometry, Platonic solids.


Teaching and Learning Methods - Evaluation

Delivery

Classroom (face-to-face)

Use of Information and Communications Technology -
Teaching Methods
Activity Semester Workload
Lectures (13X3) 39
Working independently 78
Exercises-Homeworks 33
Course total 150
Student Performance Evaluation

Final written exam in Greek (in case of Erasmus students in English) which includes resolving application problems.


Attached Bibliography

See the official Eudoxus site. Books and other resources, not provided by Eudoxus:

  • Π. Πάμφιλου, Γεωμετρία, Εκδόσεις Τροχαλία, 1989.
  • M.J. Greenberg, Euclidean and non-Euclidean Geometry-Development and History, W.H. Freedmann and Company, 1973.
  • R. Hartshorne, Geometry: Euclid and beyond, Springer, 2000.
  • H. Meschkowski, Noneuclidean Geometry, Academic Press, 1964.