Undergraduate Elective 1063

Από Περιγράμματα - Τμήμα Μαθηματικών
Μετάβαση σε: πλοήγηση, αναζήτηση


Γενικά

Σχολή Σχολή Θετικών Επιστημών
Τμήμα Τμήμα Μαθηματικών
Επίπεδο Σπουδών Προπτυχιακό
Κωδικός Μαθήματος MAE735
Εξάμηνο 7
Τίτλος Μαθήματος ΜΗ ΠΑΡΑΜΕΤΡΙΚΗ ΣΤΑΤΙΣΤΙΚΗ - ΚΑΤΗΓΟΡΙΚΑ ΔΕΔΟΜΕΝΑ
Αυτοτελείς Διδακτικές Δραστηριότητες Διαλέξεις (Εβδομαδιαίες Ώρες Διδασκαλίας: 3, Πιστωτικές Μονάδες: 6)
Τύπος Μαθήματος Ειδίκευσης
Προαπαιτούμενα Μαθήματα
Γλώσσα Διδασκαλίας και Εξετάσεων Ελληνική
Το Μάθημα Προσφέρεται σε Φοιτητές Erasmus Ναι (στην Αγγλική γλώσσα)
Ηλεκτρονική Σελίδα Μαθήματος (URL) Δείτε το eCourse, την Πλατφόρμα Ασύγχρονης Εκπαίδευσης του Πανεπιστημίου Ιωαννίνων.


Μαθησιακά Αποτελέσματα

Μαθησιακά Αποτελέσματα Στόχος του μαθήματος αυτού είναι η εισαγωγή των φοιτητών στις μεθόδους και τις τεχνικές της Mη Παραμετρικής Στατιστικής (προσημικοί έλεγχοι, έλεγχοι καλής προσαρμογής κοκ), καθώς επίσης και η εφαρμογή τους σε πραγματικά πρακτικά προβλήματα. Σκοπός είναι με την παρακολούθηση του μαθήματος ο φοιτητής να έχει κατανοήσει τις βασικές μεθόδους της Μη Παραμετρικής Στατιστικής, να γνωρίζει πότε θα πρέπει να τις υιοθετεί και πως να τις εφαρμόζει.
Γενικές Ικανότητες
  • Αυτόνομη εργασία
  • Σύνθεση δεδομένων και πληροφοριών
  • Λήψη αποφάσεων
  • Προαγωγή της ελεύθερης, δημιουργικής και επαγωγικής σκέψης
  • Σύνθεση δεδομένων και πληροφοριών.


Περιεχόμενο Μαθήματος

  • Έλεγχος μέσης τιμής ή μέσων τιμών: (απλό προσημικό τεστ, προσημικό τεστ κατά ζεύγη, τεστ Wilcoxon, Wilcoxon - Mann - Whitney, Kruskal - Wallis). Τεστ καλής προσαρμογής (X2 τεστ , Kolmogorov - Smirnov). Μέτρα Συσχέτισης. Τεστ ροών.
  • Κατηγορικές Μεταβλητές. Δειγματικά μοντέλα, Στατιστικοί Έλεγχοι ποσοστών, Πίνακες Συνάφειας (Τεστ Ανεξαρτησίας, Συμμετρίας, Περιθώριας Ομοιογένειας), 2 x 2 Πίνακες Συνάφειας (Ακριβές Τεστ Fisher, Τεστ McNemar), Εφαρμογές, Λογαριθμογραμμικά μοντέλα για πίνακες συνάφειας.


Διδακτικές και Μαθησιακές Μέθοδοι - Αξιολόγηση

Τρόπος Παράδοσης Στην τάξη
Χρήση Τεχνολογιών Πληροφορίας και Επικοινωνιών
Οργάνωση Διδασκαλίας
Δραστηριότητα Φόρτος Εργασίας Εξαμήνου
Διαλέξεις (13Χ3) 39
Αυτοτελής Μελέτη 78
Επίλυση Ασκήσεων - εργασίες 33
Σύνολο Μαθήματος 150
Αξιολόγηση Φοιτητών Γραπτή τελική εξέταση στα Ελληνικά (σε περίπτωση φοιτητών Erasmus στην Αγγλική γλώσσα) η οποία περιλαμβάνει επίλυση προβλημάτων εφαρμογής των γνώσεων που αποκτήθηκαν και συγκριτική αξιολόγηση στοιχείων θεωρίας.


Συνιστώμενη Βιβλιογραφία

Δείτε την υπηρεσία Εύδοξος. Συγγράμματα και άλλες πηγές εκτός της υπηρεσίας Εύδοξος:

General

School School of Science
Academic Unit Department of Mathematics
Level of Studies Undergraduate
Course Code ΜΑΕ735
Semester 7
Course Title Non Parametric Statistics- Categorical Data Analysis
Independent Teaching Activities Lectures (Weekly Teaching Hours: 3, Credits: 6)
Course Type Special Background
Prerequisite Courses -
Language of Instruction and Examinations Greek
Is the Course Offered to Erasmus Students Yes (in English, reading Course)
Course Website (URL) See eCourse, the Learning Management System maintained by the University of Ioannina.


Learning Outcomes

Learning outcomes

The aim of this course is to introduce students to the methods of Non parametric techniques (goodness-of-fit tests, ranks etc) as well as their application to real practical problems. At the end of the course the student should have understood the basic methods of Non-Parametric Statistics and Categorical Data, knowing when to adopt and how to apply them for analyzing data.

General Competences
  • Working independently
  • Decision-making
  • Production of free, creative and inductive thinking
  • Criticism and self-criticism.


Syllabus

Empirical distribution function, Goodness of fit tests: Kolmogorov-Smirnov test, Chi-square, Runs test, Sign tests, Wilcoxon - Mann - Whitney test, Kruskal - Wallis test. Correlation coefficients. Categorical Variables. Statistical inference for binomial and multinomial parameters, Contingency Tables, Comparing two proportions, Testing: independence, Symmetry, Homogeneity. 2 x 2 Tables (Exact Fisher's test, McNemar's test). Applications. Loglinear models.


Teaching and Learning Methods - Evaluation

Delivery

Classroom (face-to-face)

Use of Information and Communications Technology -
Teaching Methods
Activity Semester Workload
Lectures (13X3) 39
Working independently 78
Exercises-Homeworks 33
Course total 150
Student Performance Evaluation

Final written exam in Greek (in case of Erasmus students in English).


Attached Bibliography

See the official Eudoxus site. Books and other resources, not provided by Eudoxus:

  • Agresti, A. (2007). An Introduction to Categorical Data Analysis. 2 ed. ISBN: 978- 0-470-38800-# Wiley
  • Conover, W. J. (1999). Practical Nonparametric Statistics. 3 ed. ISBN: 978-0-471- 16068-# John Wiley & Sons
  • Ζωγράφος, Κ. (2009). Κατηγορικά Δεδομένα. Πανεπιστήμιο Ιωαννίνων.
  • Μπατσίδης, Α. (2010). Εισαγωγή στη Μη Παραμετρική Στατιστική. Πανεπιστήμιο Ιωαννίνων